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Variations of HDO and H2180 concentrations are observed in precipitation both on a

geographical and on a temporal basis. These variations, resulting from successive isotopic
fractionation processes at each phase change of water during its atmospheric cycle, are well
documented through the IAEA/WMO network and other sources. Isotope concentrations
are, in middle and high latitudes, linearly related to the annual mean temperature at the
precipitation site. Paleoclimatologists have used this relationship to infer paleotemperatures
from isotope paleodata extractable from ice cores, deep groundwater and other such
sources. For this application to be valid, however, the spatial relationship must also hold in
time at a given location as the location undergoes a series of climatic changes. Progress in
water isotope modeling aimed at examining and evaluating this assumption has been
recently reviewed (Jouzel et al., 1997) with a focus on polar regions and, more specifically,
on Greenland. This article was l:rgely based on the results obtained using the isotopic
version of the NASA/GISS Atmospheric General Circulation Model (AGCM) fitted with
isotope tracer diagnostics. We extend this review in comparing the results of two different
isotopic AGCMs (NASA/GISS and ECHAM) and in examining, with a more global
perspective, the validity of the above assumption, i.e. the equivalence of the spatial and
temporal isotope-temperature relationship. We also examine recent progress made in
modeling the relationship between the conditions prevailing in moisture source regions for
precipitation and the deuterium-excess of that precipitation.



1. Introduction

The validity of using the isotopic composition of paleowater (e.g., from deep ice cores or
lake sediments) for inferring paleotemperatures has been reviewed in recent articles

principally focusing on Greenland ice core data (Jouzel et al., 1997 and 1998). In the
standard reconstruction approach, the linear spatial relationship (8 = a Tg+b) between the

surface temperature, T, and the isotopic content of the precipitation (8D or 8180 expressed
in per mill with respect to V.SMOW, the Vienna Standard Mean Ocean Water (Craig,
1961)) is assumed to hold at a single geographic point as it experiences a sequence of
climatic changes over time. The isotope paleothermometer thus employs a so-called
"modern analogue method" similar to that adopted in most other paleoclimate
reconstruction. However, the assumption that the present-day spatial slope (“"a" in the
equation above) serves as a reliable surrogate for the more relevant "temporal" slope is now
being challenged, particularly for Greenland where independent long term (glacial-
interglacial) estimates of temporal slopes appear considerably lower than the observed

present-day spatial slopes.

In the present review article, we extend the discussions of Jouzel et al. (1997, 1998) by
examining the performances of two different isotopic GCMs (NASA/GISS New York and
ECHAM Hamburg) and by accounting for several recent experiments (Armengaud et al.,
1998, Hoffmann et al, 1998 and in press; Wemer et al., 1998; Cole et al., in press). These
isotopic GCMs are particularly useful since they allow, by simulating different climatic
periods, a direct comparison between spatial and temporal &/Ts relationships. Results from

present-day, LGM (Last Glacial Maximum at 21 kyr BP), mid-Holocene (6 kyr BP) and 2
* COp experiments will be discussed. We also consider some aspects linked with the

climatic information contained in the deuterium excess parameter, d = 8D - 8 * 5180.

2. Estimates of Temporal 3/Ts Relationships.

The present-day spatial 5180/Tj relationship is well documented worldwide, with slopes

ranging from ~ 1.1 %o/°C in high-latitude areas to virtually zero in tropical regions, where
5180 is more strongly correlated to the amount of precipitation. Unfortunately (Rozanski et
al.,, 1992), the temporal 5180/Tg slope cannot be similarly well-characterized due to a
paucity of relevant data estimating the temporal slope requires records of both surface
temperature and isotope concentration in precipitation that span a long period of time at the
same site. Still, some estimates are possible. Through the IAEA/WMO network initiated in
1961, about three decades of data are available for a number of sites, most of them situated
in Europe. Using these data, Rozanski et al. (1992) noted that decadal-scale changes of
8180 content in precipitation over Europe closely follow decadal-scale changes of surface



air temperature, thus confirming that isotope records convey information on past
temperature changes. The average 5180/T; temporal relationship inferred from these data
was about 0.6%/°C, which is close to the spatial slope observed for European stations in
the IAEA/WMO network (IAEA, 1992).

In polar regions (Jouzel et al., 1997), five different approaches, relevant to a wide range of
time scales, have been employed to estimate past temperatures for independent validation of
the isotope thermometer: (1) use of temperatures recorded in the vicinity of the isotope
sampling site (if not at the site itself) to extend the comparison over the period of
instrumental observations; (2) use of Automatic Weather Stations (AWS) and satellite
microwave brightness temperatures in conjunction with high resolution isotope profiles
(this approach was employed at the GISP2 site for 1987 - 1990); (3) analysis of the
changing percentage of melt layers in ice cores to give estimates of shifts in summer
temperatures during various periods of the Holocene; (4) estimation of paleotemperatures
over a wide range of timescales (centuries to tens of millennia) from bore hole temperature
profiles; and (5) analysis of the temperature-dependent change in snow accumulation at a
given location. Various studies employing these approaches provide compelling evidence
that the temporal slope in Greenland tends to be lower than the present-day spatial slope (see
Jouzel et al., 1997, and references therein). The temporal slope appears consistently closer
to the spatial slope during recent times, i.e. during the Holocene period, than it does for the
glacial/interglacial timescale. For this latter timescale, the difference between the spatial and
temporal slopes can reach a factor of two or more, at least over Greenland, as independently
shown by Cuffey et al. (1995), Johnsen et al. (1995) and recently by Dahl-Jensen et.al.
from paleothermometry information retrieved from the GISP2 and GRIP cores,
respectively. They estimated a value of ~0.3 %d°C for the LGM/present-day temporal
slope, whereas the observed present-day spatial slope over Greenland is 0.67 %«/°C which
has been recently confirmed in applying an inverse Monte-Carlo method (Dahl-Jensen et
al., 1998). Unfortunately, the same method is not applicable for the comparable short and
rapid Dansgaard-Oeschger events since the temperature signal they most probably
imprinted on the ice is already diffused out. For such rapid events, no direct temperature
reconstruction from bore hole temperatures is available but there is some hope to estimate
temperature changes in applying the paleothermometry method recently developed by
Severinghaus et al. (1998).

In mid-latitudes, the temporal slopes for the glacial/interglacial timescale can be estimated
from paleo-groundwater, with the noble gas content of such groundwater providing the
necessary temperature data. Such a study conducted in the Great Hungarian Plain led to an
estimate of the of 0.59 %4«/°C, which is similar to the present-day spatial slope in Europe.
The glacial/interglacial temporal slope obtained from some other aquifers, however, is



lower, with values of around 0.3 - 0.4 %+/°C in England and Germany (see Rozanski et al,,
1992). The information contained in North American paleogroundwater is more
ambiguous. They may be either isotopically lighter or heavier than Holocene groundwater,
depending on the area considered (Phillips et al., 1986; Stute et al., 1992; Plummer, 1993;
Dutton, 1995), though the estimated Last Glacial Maximum temperatures are consistently

cooler.
3. Use of Simple Rayleigh-Type Models

Different types of models have been developed to understand the water isotope cycle.
Rayleigh-type distillation models are the simplest ones. They are useful because they
include the main physical controls over the global distributions of 8D and 8180 in
precipitation yet are simple enough for comprehensive analyses and efficient first-order
sensitivity studies. Briefly, a Rayleigh distillation model (Dansgaard, 1964) computes the
isotopic content of an idealized, isvlated air parcel traveling from an oceanic source towards
a region where condensation and finally precipitation takes place. Condensate forms in
isotopic equilibrium with the surrounding vapor and is removed immediately from the
parcel. Under this framework, the isotope content of the precipitation is a unique function of
the initial masses of isotope and water vapor within the air parcel, of the water vapor mass
remaining when the precipitation forms, and of the assumed temperature-dependent
fractionation coefficients. The water masses can themselves be characterized in terms of

ambient temperatures and vapor pressures.

Rayleigh-type distillation models .successfully reproduce the main characteristics of the
global water isotope cycle, in particular the observed seasonal and spatial variations, the
observed relationships with local temperature, and the strong link between 8D and 5180
(Craig, 1961; Dansgaard, 1964; Friedman et al., 1964). These models work particularly
well in middle and high latitudes where precipitation generation is not dominated by large
convective systems. Their ability to simulate the present-day temperature/isotope
relationships correctly in these regions was, in fact, a major justification for the assumed
equivalence between temporal and spatial §/Ts slopes. Enhancements of Rayleigh-type
models include the estimation of initial isotope concentrations in vapor from sea surface
conditions (Merlivat and Jouzel, 1979) and a treatment of kinetic fractionation processes
during snow formation (Jouzel and Merlivat, 1984; Ciais and Jouzel, 1994). They show
how sea surface temperature, Ty, and the temperature of formation of the precipitation, T,
combine to influence the isotopic content of a precipitation. For example, Aristarain et al.
(1986) showed that for Antarctic snow A§180 can be equated, over a large range of snow
formation temperature, to 1.1 AT¢ - 0.55 ATy, where A represents a difference between

two climates.



This equation implies that the constancy of the evaporative source is a prerequisite for using
the spatial &/T's slope as a surrogate for the temporal slope. Indeed, an equal, simultaneous
change of the temperatures in the source region and at the precipitation site would result in a
temporal slope that is lower than the spatial slope by a factor of about 2 (Aristarain et al.,
1986; Boyle, 1997). The possible effects of source temperature variation on the temporal
slope have been considered in various studies (Siegenthaler and Matter, 1983; Grootes,
1993, Jouzel et al., 1997). Boyle 71997) recently suggested that the discrepancy between
central Greenland bore hole temperature and the isotopic composition of LGM ice can be
explained by cooler tropical temperatures during the LGM. This author assumes that the
spatial 8180/Ts slope is time-invariant and that the intercept varies with tropical
temperatures and global isotope composition. The assumption that tropical ocean
temperatures were 5°C cooler than they are at present (see Boyle, 1997 and references
herein) leads to an apparent temporal 5180/T; slope of 0.37 %d/°C, which is close to that

derived from bore hole paleothermometry.

In the real and very complex world, however, many other explanations for the difference
between the temporal and spatial slopes are viable, and simple Rayleigh-type models cannot
address all of these explanations. In Antarctica, for example, observations and simple
models agree only with respect to the temperature of precipitation formation, which is
roughly the temperature just above the inversion layer (Robin, 1977), a temperature much
warmer than the surface temperature. A change in the strength of the inversion layer
between climates, a change difficult to predict with a simple Rayleigh-type model, can have
a significant impact on the temporal slope. In addition, a simple Rayleigh-type model cannot
properly account for the complexity of dynamical and microphysical processes leading to
the formation of individual precipitation events, or for the changes in ocean surface
characteristics, in surface topography and in atmospheric circulation associated with
important climatic changes. In the light of these deficiencies, the physics of water isotope
fractionations have been incorporated into atmospheric GCMs, as discussed in the next

section.
4. Use of Isotopic GCMs for Present-Day Climate

An isotopic GCM is essentially an atmospheric GCM fitted with special tracer diagnostics
that follow HDO and H2180 tracers through every stage of the water cycle. Equilibrium
and kinetic fractionation processes are accounted for at every change of phase (surface
evaporation, atmospheric condensation, and reevaporation of precipitation). Joussaume et al.
(1984) pioneered the approach, simulating global fields of isotope concentration for present-
day January climate using a low-i2solution version of the GCM of the Laboratoire de
Meétéorologie Dynamique (LMD/Paris). Jouzel et al. (1987) generated a full annual cycle of
isotope fields with the 8° * 10° NASA Goddard Institute for Space Studies (GISS) GCM



and studied the sensitivity of the model results to various parameterizations (Jouzel et al.,
1991). Both the LMD and the GISS isotopic GCMs have since been run at higher spatial
resolutions (Joussaume and Jouzel, 1993; Charles et al., 1994, 1995, Andersen, 1997).
Water isotopes have more recently been incorporated into two different versions of the
ECHAM GCM (Hoffmann and Heimann, 1993, 1997, Hoffmann et al., 1998a ; Werner et
al., 1998), and into the GENESIS GCM, which was developed at the National Center for
Atmospheric Research in the U.S. (Matthieu et al., submitted). We will discuss here in
some more detail the results of the GISS (8° * 10° version) and the ECHAM (T42
resolution corresponding to 2.8°*2.8°) model.

As discussed in Jouzel et al. (1987), Joussaume and Jouzel (1993) and Hoffmann et al.
(1998a), these models reproduce well the main characteristics of water isotope distributions
in present-day precipitation. The :nodels realistically simulate the decrease of 5180 in
higher latitudes, the lack of a latitudinal gradient in the tropics, and the land-sea contrast in
isotope concentrations, among other features. Although the different models use quite
different physical parameterizations and numerical schemes to describe the global climate,
obviously they capture the main characteristics of the global cycle of the water isotopes. We
illustrate the striking correspondence between the GISS and ECHAM models by
comparing the simulated zonal means of 8180 (see Figure 1a). Only at high northem
latitudes and in particular over the Arctic ocean does the GISS model predict a precipitation
up to 8% more depleted than the ECHAM model. This difference can only partly be
attributed to the 4 to 6°C colder temperatures simulated there by the GISS model and,
therefore, is not completely understood.

Here Figure 1:

Figure 1: Zonal mean of (a) 5180 in precipitation (control run), (b) the seasonal gradient in
%o /°C (i.e. the slope of the 8180 /Temperature relation for the mean 12 months of the
control run), (¢) the difference of the annual 5180 between the LGM (corrected for a
supposed 1.6 %c enrichment of the glacial ocean) and the Control simulation and (d) the
temporal (LGM-Control) gradient.

At the regional level, a recent simulation performed by Wermner et al. (1998) has clearly
shown that the quality of an isotopic GCM in terms of its ability to simulate cormrectly the
observed isotopic distribution can be excellent when using a high resolution. A prerequisite
for this is a good simulation of the region’s climate characteristics. This is illustrated in
Figure 2, in which the observed and simulated !80-Tg distributions over Greenland are

compared.

Here Figure 2.



Figure 2 : Spatial linear relationship between & and surface temperature on the Greenland
ice sheet (Dansgaard slope), a) observations, b) model results (from Werner et al., 1998).

In addition to the long-term temporal 5180-T relationship (see section 5), one can define a

modern seasonal isotope-temperature gradient. In Figure 1b, using the 12 long-term
monthly means of 5'°0 and T,, we calculated for each grid a 5180-Tg slope. This

‘seasonal’ slope is typically about a factor of 2 weaker than the spatial slope in the respective
regions. This is mainly due to seasonal changes in the characteristics of the vapor source
that strongly diminish the seasonal relationship compared to the spatial or the long-term
(interannual) temporal gradient (Siegenthaler and Matter, 1983 ; Aristarain et al.1986). Over
land, both models simulate realistically a seasonal gradient between 0.2 and 0.6 %d/°C, with
higher values in the interior of the continents (see the maxima at 50°N in Fig. 1b where the
northern hemisphere’s land masses are largest). Continental re-evaporation seems to
amplify the isotope response to local temperatures. Because the isotopic composition of
water remains unchanged in both models during re-evaporation, a strong contribution of
recycled water to local rainfall (usually during summer, see Koster et al., 1993) enriches
isotopically the subsequent precipitation and thus amplifies the seasonal amplitude of the
water isotopes. However, Figure 1b demonstrates differences between the models, too. The
ECHAM produces systematically higher seasonal gradients most probably due to
differences in the model’s land sui..ice schemes and/or the seasonal vapor transport.

Long simulations (10 years or more), using observed sea surface temperatures from the
recent period as boundary conditions, have recently been analyzed (Hoffmann et al., 1998a ;
Cole et al., in press). These simulations capture the weak correlation between the isotopic
signal and the temperature but differ with respect to the observed anticorrelation with
precipitation amount, which seems overestimated by Cole et al. (submitted). These authors
have indeed identified the changes in the amount of precipitation and in the contributions of
local and nearby sources as the most important determinants of simulated interannual
isotopic changes. As previously examined by Cole (1993), the simulation of Hoffmann et
al. (1998 a) demonstrates that the strongest interannual climate anomaly, the El Nino
Southern Oscillation, imprints a strong signal on water isotopes. This makes the water
isotopes a good candidate for long term reconstruction of the ENSO phenomenon given
that suitable archives, which conserve the isotopes in seasonal resolution, can be found.

5. Simulated present-day / glacial temporal isotope/temperature relationships

Although certain model weaknesses in Figures 1a and 1b can be identified, the present-day
performances of the models are adequate enough to justify simulations of isotope behavior
in alternative climates with the goal of improving interpretations of isotope paleodata. The
application of the isotopic GCM toward this goal is straightforward. In a simulation of the



present-day climate, the ambient environmental conditions (e.g., temperatures) in a region
of interest and the isotope concentrations in precipitation or vapor there are carefully noted.
Additional climates are then simulated (through modification of solar forcing, surface
boundary conditions, etc.) in separate numerical experiments, and the same variables are
recorded again for each climate. The first climate modeled for this analysis (other than the
present-day climate) is that of the Last Glacial Maximum (Joussaume and Jouzel, 1993 ;
Jouzel et al., 1994 ; Charles et al.,, 1994, 1995; Hoffmann et al., 1997). The LGM is
particularly relevant for several reasons: (a) the glacial climate is very different from the
current climate; (b) the LGM boundary conditions are adequately known (CLIMAP, 1981);
and (c) isotope paleodata are available for this period in both polar and temperate regions,
allowing partial validation of model results. Comparisons with available paleodata
(Joussaume and Jouzel, 1993, Jouzel et al., 1994, Hoffmann et al., 1997) suggest that
GCMs reproduce LGM isotope concentrations reasonably well.

Figure 3 shows the 5180 anomalies simulated by the GISS and the ECHAM model for the
LGM period. Although the basic features of both simulations are the same (a strong
isotopic depletion in high latitudes due to the continental ice masses, the larger sea ice extent
and the southward shift of the oceanic polar front as prescribed by the CLIMAP data set),
some interesting differences can be stated, presumably caused by slightly different imposed
boundary conditions. For example, the GISS simulation used the icesheet reconstruction
devised by (1976, 1981) while the ECHAM simulation used a more recent one devised by
Tushingham and Peltier (1991). In this new reconstruction, the Laurentide icesheet is
prescribed about 1 km lower than before and the remaining ice mass is distributed on West
Antarctica and Greenland, which one thus assumed to be considerably higher than before.
In these regions, the modification of the orography in the new reconstruction produces a
stronger rainout of air masses and, consequently, more depleted precipitation. A
comparison with the observed isotope signal of the corresponding ice cores from Central
Greenland and West Antarctica leads us to the conclusion that the isotope models do not
support the new ice sheet reconstruction. In fact, this reconstruction was already criticized
for other reasons (Edwards, 1995).

Here Figure 3

Figure 3: Difference of annual mean 8180 in precipitation between LGM and Control for
the GISS and the ECHAM.

A further difference between the two LGM runs is seen in the generally higher §-values
produced by the ECHAM model in the tropics and subtropics (about 1% in the zonal mean,
see Fig.1c). The ECHAM model is generally more sensitive than the GISS model (as was
already suggested by its larger seasonal gradients) to the prescribed SST changes in the



tropics. In the ECHAM simulation, the monsoon circulation over both Africa and Asia is
strongly diminished during the LGM, and the reduction of precipitation produces
considerably higher 8-values than in the control run (up to 3.5%c) due to the isotopic
‘amount effect’. In the tropical and subtropical Pacific both models react similarly to the
imposed SST changes. Reduced tropical (-2°C) and slightly increased subtropical (1-2°C)
temperatures weaken the moisture convergence in the tropics and therefore reduce the
precipitation in the ITCZ, enhancing the precipitation in the subtropics. The GISS and the
ECHAM models agree in their corresponding isotope changes, each producing less
depleted precipitation in the region of the ITCZ and more depleted precipitation in the
subtropics (see Fig.3). Since the two LGM simulations differ regionally, much significance
should be given to the calculated temporal 8/Ts slopes (see Figure 1d and 4 as well as Table
1) for the regional calibration of the paleothermometer. The slopes vary over the continents
between 0.4 and 0.8 %«/°C, except over East Antarctica, wich shows gradients higher than
1%0/°C. Again, the models tend to simulate higher temporal gradients in the interior of the
continents (see Figure 4). As for the seasonal gradient, the water isotopes in the ECHAM
model are more sensitive to temperature changes over the continental interior.

Here Figure 4

Figure 4: Slope characterizing the temporal 5180 /T relationship derived from LGM-

Control differences (%o/°C) for the GISS and the ECHAM models. The temperature and
the 8180 field have been smoothed prior to the calculation of the slope. Points are only
shown with Tanp < 15°C and A [ GM-Control T < -3°C.

Although the differences between the temporal and spatial slopes are high in some regions
(e.g., a 50% difference in West Antarctica), the overall similarity between the slopes led
Jouzel et al. (1994) to suggest that spatial slopes seem on average to be adequate surrogates
for temporal slopes. The relative differences over the ice sheets were of order 30% or less
(see Table 1). Jouzel et al. (1994) also note that, in mid- and high northern latitudes, the
GISS GCM often simulates temporal slopes that are a bit lower than the spatial slopes.
They did not, however, infer any conclusion from this bias because it was not seen in all
regions (see discussion in Jouzel et al., 1997). This is consistent with the ECHAM results
and there is, indeed, no robust tendency for lower temporal than spatial slopes in the model
experiments discussed here (In fact, in Antarctica, both models generate temporal slopes
that are slightly higher than the spatial, see Table 1). Moreover, some regions are strongly
affected by atmospheric circulation changes (e.g., in Asia, the strength of the monsoon is
reduced during the LGM). Although, for modern conditions, the isotopes are clearly
influenced by the temperature effect, circulation changes lead to a high noise level in the

relation between the isotopes and local temperatures (see the regional ¢ values in Table 1).



A thorough interpretation of the water isotopes in such regions, therefore, should take into

account local circulation changes as well.



Regions

Global
Obs.
GISS
ECHAM
N.Amer.
Obs,
GISS
ECHAM
Greenl.
Obs
Obsle
GIS
ECHAM
Europe
Obs.
GIS
ECHAM
Asia
Obs.

GISS

Spatial Gradient LGM-Control Gradient

m r m S
0.58 09
0.59 0.96 0.51 0.34
0.58 0.97 0.46 03
0.56 0.88
0.56 0.96 0.43 0.13
0.44 0.87 0.58 0.2
0.51 0.84
0.67 0.94
0.51 0.86 0.43 0.06
0.51 0.95 0.49 0.08
0.48 0.73
0.55 0.92 0.36 0.05
0.44 0.80 0.31 0.07
0.47 0.8
0.49 0.94 0.44 0.1



ECHAM
WAnt.

Obs.

GISS

ECHAM
EAnt.

Obs.

GISS

ECHAM

0.35

0.61

0.7

1.0

0.77

0.9

0.93

0.98

0.83

0.96

0.43

1.02

0.77

1.25

0.88

0.47

0.34

0.15

0.42

02



Tablel: List of simulated and observed spatial and temporal gradients for the 8°x10° GISS
model and the ECHAM3 T42 model. m denotes a gradient in %¢/°C, 1 the corresponding
correlation, ¢ the spatial standard deviation of the corresponding quantity. For all
calculations only grid points (or stations) are considered with an annual mean temperature <
15°C. For the temporal gradient (LGM-Today), the analysis has been further limited to grid
points with a temperature change of at least -3°C. The observations are from the
IAEA/GNIP network (IAEA, 1992) and, for the Greenland ice sheet, from Johnsen et al.
(1989) and Hoffmann et al. (1998b).

6. Simulations for Warmer Climates

The advantage of using more than two climates to define the temporal slope and the interest
of examining climates similar to those that may someday prevail due to an increase in
atmospheric greenhouse gases motivated a recent 2*CO2 isotopic experiment with the

GISS 8° * 10° isotopic model (See Hansen et al., 1984 for a discussion of an analogous
simulation with the non-isotopic version of the GCM). The simulated climate in the 2¥*CO?2

simulation is about 4° C warmer on average than that in the present-day simulation, with
higher temperature increases at higher latitudes. As a result, the 2*CO2 simulation produced
isotopically heavier precipitation at high latitudes. Somewhat surprisingly, though, the
simulation also produced slightly lighter precipitation in some mid-latitude areas and
consistently lighter precipitation in tropical and equatorial regions (Figure 5). In these latter
areas, 8180 in precipitation is decreased by up to 3% in association with the
aforementioned precipitation ‘amount effect’. Some type of ''compensation -effect"
(decreases in tropical 58180 making up for increases in high latitude 5180) may be in

evidence here.

Here Figure 5

Figure 5: Simulated change of 8180 in precipitation (2 * CO2 minus present-day) for the
8° * 10° version of the GISS model.

Spatial and temporal slopes from all three simulated climates are compared in Figure 6. The
top part of the figure shows the spatial §180/T; relationships simulated over Greenland for

present-day, LGM, and 2*CO conditions; the spatial slopes are 0.51, 0.76, and 0.73 %/°C,
respectively. These three slopes are each higher than the temporal slopes computed with the
three climates, which range from 0.23 to 0.49 %4/°C over Greenland, as shown in the lower
part of the figure (each plot in the lower part represents a single Greenland grid cell.). These
results therefore add some support to the hypothesis that the temporal slope might be



generally lower than the measured present-day spatial slope over Greenland. Similar results
are seen over East Antarctica, contradicting the aforementioned results obtained with the
present-day and LGM simulations alone. Similar results were also produced over some (but

not all) sections of northern hemispiiere continents.

Here Figure 6

Figure 6: Scatter plots showing the simulated spatial 5180/Ts relationships across
Greenland for the present-day, LGM, and 2 * CO2 climates (top 3 plots) and the temporal
5180/Ty relationships at each Greenland grid cell (lower 8 plots).

Compared to the strong climatic changes (relative to present-day) associated with 2 * CO2
conditions or LGM conditions, climatic changes associated with the period around 6 ky BP
are fairly small. Nevertheless, a relatively large amount of paleo archives is available bearing
information about the isotopic composition of precipitation during this so called mid-
holocene optimum. We performed, therefore, AGCM simulations using boundary
conditions on 6 kyr BP, which simply amounted to a change in the control simulations’
assumed solar insolation. A stronger (weaker) summer (winter) insolation at low northern
latitudes was already mentioned as a possible reason for an intensified ocean-land
temperature contrast and, consequently, for a stronger summer monsoon circulation (Prell
and Kutzbach, 1987).

The response (Figure 7) to this ‘weak’ forcing is indeed more ambiguous than the
previously discussed response to LGM forcing discussed before. Globally, the 81 80 values
produced by the GISS model for the mid-holocene optimum never deviate more than 0.7%o
from the control run values. In regions where the temperature effect dominates, the
strongest response of the water isotopes is over the central United States and Canada, where
an enrichment of §180 in precipitation by about 0.4-0.6%o parallels a warming there of
between 0.5 and 1.0 °C. In low latitudes, the amplification of the hydrological cycle (mainly
the African monsoon and in the Amazon basin) leads to slightly lower 5180 due to the
amount effect, with a maximum change of -0.5%¢. On the other hand, in the ECHAM
model the isotopic response is spatially very noisy, in particular in regions of sparse rainfall.
In East Antarctica, for example, no regionally consistent response can be defined. The mid-
holocene optimum 3180 values differ from those of the control run by up to +3%.. The
stronger depletion of nearly all tropical and subtropical continental rainfall ranges from -0.5
to -2%c caused again by the strengthening of the monsoon in Africa and Southeast Asia.

Here Figure 7



Figure 7: Difference of the annual mean 5180 in precipitation between the Holocene
optimum (6kyr BP) and the present-day climate, as simulated by the GISS and the
ECHAM models.

Although the mid-holocene optimum results of both models show some similarities, (e.g.,
the intensification of the hydrological cycle in low latitudes and the resulting increased
isotopic depletion in the precipitation there), the weak change in the forcing produces an
isotopic response that is more ambiguous and spatially less coherent than induced by the
LGM boundary conditions. Furthermore, circulation effects are strongly influencing the
water isotopes. The ECHAM model, for example, simulated a warming in Siberia of about
0.5 to 1.5 °C. Nevertheless, only over eastern Siberia does the model calculate positive
isotope anomalies (see Figure 7b). It is certainly necessary to further investigate the
deviations from a linear isotope-temperature relationship in such regions where otherwise
the temperature effect controls the isotopic composition.

7. Deuterium-Excess simulations

Additional information on the water cycle can be obtained from a combination of the two
stable water isotopes, deuterium and oxygen 18 through the ‘deuterium excess’, d. This
parameter was defined by Dansgaard (1964) as the deviation from the Meteoric Water Line
(Craig, 1961): d = 8D - 8 8!80. The deuterium excess mainly reflects the kinetic
fractionation occurring during non-equilibrium processes such as evaporation above the
ocean surface (Merlivat and Jouzel, 1979), evaporation of liquid precipitation under the
cloud base (Stewart, 1975), and snow formation (Jouzel and Merlivat, 1984). Above the
ocean, the deuterium excess in vapor depends on surface parameters. As shown by simple
models (Merlivat and Jouzel, 1979 ; Johnsen et al., 1989), the excess in vapor above the
ocean surface increases with increasing ocean surface temperature (by about +0.35%¢ per
°C) and with decreasing relative humidity ( by about -0.43%oc per %).

The first deuterium-excess simulation covering a full seasonal cycle was performed with
the GISS model (Jouzel et al., 1987). The results were satisfactory as far as global mean
annual distribution is concerned. No attempt was made then, however, to compare
simulated and observed seasonal distributions of excess, which have very well defined
features. This detailed analysis has been performed for the ECHAM simulation of
Hoffmann et al., 1998. Globally, the simulated deuterium-excess agrees fairly well with
observations, showing a maximum in the interior of Asia and minima in cold marine
regions. Over Greenland, the model fails to show the observed seasonality of the excess,
but the overall quality of the model is illustrated by the comparison of the simulated and
observed deuterium excess distributions (annual mean) over Antarctica (Figure 8). One
should note here that simulating this second order parameter correctly is very difficult.



Simulated distributions are very sensitive not only to the parameterization of kinetic effects
but also to the transport scheme used in the GCM (Jouzel et al., 1991) and possibly to
model resolution, as shown by a comparison between results obtained with the 8 * 10 and 4
* 5 GISS isotopic GCMs (unpublished). This difficulty in modeling deuterium-excess is
even seen in the more recent high resolution simulation of Wemer et al. (1998), which

produces much too large seasonal cycles and unrealistic negative values.
Here Figure 8 : Figure 7 of your JGR paper

Figure 8 : Deuterium excess d versus in precipitation over Antarctica versus the
corresponding 8D values simulated by the ECHAM3 T42 GCM (Hoffmann et al., 1998a)
with observations from Petit et al. (1991)

Simple Rayleigh type models suggest that the information regarding source conditions is at
least partly preserved over the air mass trajectory (Johnsen et al., 1989 ; Petit et al., 1991 ;
Ciais et al., 1991). This is of interest for paleoclimatologists as it offers the possibility of
deriving information about climatic changes in moisture source areas from isotope
paleodata (Jouzel et al., 1982 ; Dansgaard et al., 1989 ; Vimeux et al., submitted). Indeed,
some recent results obtained with the GISS isotopic GCM support the idea that deuterium
excess values contain information on meteorological conditions at distant evaporative
sources (Armengaud et al., 1998). As part of this study, a simple isotopic model was
initialized with GCM-derived distributions of water isotopes in the vapor, an initialization
that is generally not performed correctly by simple isotopic models (Jouzel and Koster,
1996). Using this combined approach, Delmotte et al. (submitted) recently examined how
information about source regions can be derived from the seasonal distribution of the
deuterium excess (see also Ciais et al., 1995). All these experiments support the idea that
variations of the deuterium excess contain information that cannot be derived from either
3D or 5180 alone.

8. Discussion and Conclusion

A growing body of empirical evidence suggests that long-term temporal slopes in polar
regions are consistently lower thai. spatial slopes, particularly for glacial-interglacial changes.
This evidence led Jouzel et al. (1997) to examine the influence of various climatic features on
the temporal slope. As they point out, simple isotopic models suggest one possibly important
factor, namely a simultaneous and parallel change in condensation and evaporative source
temperatures between climates (e.g., cool tropics during the LGM, as suggested by Boyle,
1997). Another potentially important factor involves the seasonality of precipitation (Robin,
1983; Steig et al., 1994). If this seasonality varies greatly between climates -- if, for example,

a region receives most of its rainfall during summer in one climate and during winter in



another -- the relevance of the locally derived spatial isotope/temperature relationship would be
severely compromised. The experiments recently performed by Krinner et al. (1997) from
experiments using a GCM in which a diagnostic allows access to the mean temperature of
snow formation weighted by the amount of precipitation, are interesting in this respect. These
authors have shown that the factor of 2 observed for Greenland between spatial and temporal
slopes could be explained in their model experiments by changes in local climate parameters
(largely by seasonality) in contrast to explanations rather referring to changes in vapour source
conditions (lower tropical SSTs during the LGM, see Boyle, 1997). Those same parameters
have practically no influence on the glacial-interglacial Antarctic isotope signal, suggesting that
the classical use of the spatial slope as a surrogate of the temporal slope could be more
appropriate for Antarctic ice cores than for Greenland ice cores. We should note, however,
that Charles et al. (1994) found almost no effect of seasonality change on glacial/interglacial

isotope differences in Greenland.

Jouzel et al. (1997) cite data gleaned from isotopic GCM simulations (Jouzel et al., 1994,
Charles et al., 1994, 1995) to address the relative importance of these factors. They offer
several possible explanations for Why temporal slopes are lower than spatial slopes over
Greenland and for why this discrepancy appears especially large at the glacial/interglacial time
scale; these explanations involve, for example, changes in moisture origin, precipitation
seasonality, and the strength of the inversion layer. Despite the many difficulties faced in
calibrating the isotope paleothermometer, which are mostly related to the unknown
quantitative effects of the aforementioned environmental and sampling factors, Jouzel et al.
(1997) concluded that the use of a (calibrated) isotope paleothermometer appears justified. The
comparison with the ECHAM res:lts presented here (see also Hoffmann et al, 1998b and
Hoffmann et al., in press), further supports this conclusion and places this problem in a wider

perspective.

In addition to the critically important issue of infering long term (mainly glacial-interglacial)
local temperature changes from paleoarchives, we have briefly examined other isotope issues
that benefit from the GCM modeling approach. First, as illustrated through the comparison of
the ECHAM and GISS model results with data, improved isotopic GCMs (mainly Hoffmann
et al., 1998 and Werner et al., 1998 for the ECHAM model but also Andersen, 1997 for the
LMD model and Mathieu et al., submitted for the NCAR model can reproduce the main
features of the present-day climate’s water isotope distributions. The capacity of these isotopic
GCM s to reproduce at least part of the short term variability observed in isotopic composition
(Hoffmann et al., 1998a : Cole et al., submitted) and to relate it to climate parameters (e.g.
temperature and precipitation amount) is now demonstrated with long simulations performed
using observed SSTs. Taking advantage of the tagging of source areas implemented in the
GISS model, Cole et al. (submitte"" stressed the potential impacts of advective processes and



of associated changes in the origin of precipitation on the isotope signal. This is important in
view of the growing interest of studies dealing with short-term climatic changes. In this
respect, Cole et al.(submitted) note that this style of short-term variability differs markedly
from that associated, for example, with the cooling during the last ice age. They suggest a
continuum of controls on the isotopic content of precipitation in which smaller, advective
temperature changes tend to correlate weakly or not at all with the isotopic signal, wheras
periods of global temperature change are likely to generate an isotopic signal more consistent
with the standard paleotemperature relationship.

Isotopic modeling also seems very promising for addressing the relationship between the
deuterium excess of precipitation and climatic parameters, principally at the evaporative
source, though we note that model-simulated excess values are generally less accurate than
model-simulated 8D or 8§180. The relationship established with simple Rayleigh type
models (Merlivat and Jouzel, 1979 ; Johnsen et al., 1989) is confirmed by GCM studies
(Armengaud et al., 1998 ; Delmotte et al., submitted) which suggest that information about
the characteristics of source regions can be extracted from isotope paleo data.

Finally, we would like to point out that isotopic (atmospheric) GCMs are now beeing used
to interpret oceanic oxygen 18 data recovered from the analysis of fossil carbonate.
Measurements performed on benthic and planktic foraminifera and on corals allow the
inference of seawater 8180 changes provided that temperature changes can be
independently estimated (and provided that certain species-dependent effects are taken into
account). The 5180 contents of deep seawater, obtained from benthic foraminifera, allow
estimates of the change in global ice volume, whereas the interpretation of surface data
(planktic foraminifera and corals) is more complex.

The 5180 of sea surface water is, in addition, affected by evaporation and precipitation
fluxes at the air-sea interface, as well by continental runoff in coastal areas and by sea ice
formation and iceberg discharge in polar regions. All of these processes also affect sea
surface salinity (SSS), and there s, as a result, a strong relationship between SSS and
3180, which can be used to reconstruct paleosalinities. The interpretation of the paleo-
oceanic data assumes that the well documented present-day §180/SSS relationships hold in
time throughout the region, i.e. that the spatial and temporal slopes are similar (Duplessy et
al., 1991). To assess the validity of this assumption (see discussion in Rohling and Bigg,
1998) various modeling approaches are now being developed that either look at the ocean
surface using a very simple 2-box model (Juillet et al., 1997) or involve the incorporation of
water isotope cycles into a 3D oceanic model (Schmidt, 1998; Delaygue et al., in
preparation). One long term objective of this modeling effort (Schmidt, personal
communication) is the full coupling of the atmospheric and oceanic isotopic models. This

represents a new and exciting challenge for our scientific community.



Figure captions

Figure 1: Zonal mean of (a) 5180 in precipitation (control run), (b) the seasonal gradient in
%o /°C (i.e. the slope of the 5180 /Temperature relation for the mean 12 months of the
control run), (c) the difference of the annual 5180 between the LGM (corrected for a
supposed 1.6 %o enrichment of the glacial ocean) and the Control simulation and (d) the
temporal (LGM-Control) gradient.

Figure 2: Spatial linear relationship between 8 and surface temperature on the Greenland
ice sheet (Dansgaard slope), a) observations, b) model results (from Werner et al., 1998).

Figure 3: Difference of annual mean 5180 in precipitation between LGM and Control for
the GISS and the ECHAM.

Figure 4: Slope characterizing the temporal 8180 /T relationship derived from LGM-

Control differences (%</°C) for the GISS and the ECHAM models. The temperature and
the 8180 field have been smoothed prior to the calculation of the slope. Points are only
shown with Tapp < 15°C and A LgM-Controi T < -3°C.

Figure 5: Simulated change of 8180 in precipitation (2 * CO2 minus present-day) for the
8° * 10° version of the GISS model.

Figure 6: Scatter plots showing the simulated spatial §180/Tg relationships across
Greenland for the present-day, LGM, and 2 * CO? climates (top 3 plots) and the temporal
5180/Tg relationships at each Greenland grid cell (lower 8 plots).

Figure 7: Difference of the annual mean 8180 in precipitation betwéen the Holocene
optimum (6kyr BP) and the present-day climate, as simulated by the GISS and the
ECHAM models.

Figure 8: Deuterium excess d versus in precipitation over Antarctica versus the
corresponding 8D values simulated by the ECHAM3 T42 GCM (Hoffmann et al., 1998a)
with observations from Petit et al. (1991)
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GISS and ECHAM: Mid Hol.—180 Anomalies
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